【2	公開技術資料】	〜 株式会社ヤマグチマイカ						
題目	タルク代替提案 アモジメチコン処理マイカブレンド粉体							
分類	化粧品	作成者	浅野 浩志	Date	2025 年 9 月 19 日			

(要旨)

最近、タルク代替としての天然マイカへの要望を多く伺うようになってきた。そこで、滑らかさ、成型性、光沢抑制、価格などへの配慮を念頭に、当社が有する様々なマイカや添加物のブレンド、さらには表面処理を試みた。その結果、当社が有する微粉を含むマイカに対して、ケイ酸塩類や軽質炭酸カルシウムなどの無機物、金属石鹸等の添加が良好であり、さらにアモジメチコン処理をすることで使用感改善と共に、価格を抑えたタルク代替提案原料「アモジメチコン処理マイカブレンド粉体」を開発できたので報告する。

(キーワード)

天然マイカ、ケイ酸塩類、軽質炭酸カルシウム、金属石鹸、アモジメチコン処理、滑らかさ、成型性、 光沢抑制、価格

(背景)

タルクは、その層間の結合の弱さに起因して、滑らかで崩壊しやすい特徴を有している。このため化粧料においては、肌あたりの良さと高い成型性、さらには安価であることから広く利用されている。一方、天然マイカは、劈開はし易いものの、しっかりとした板状構造をとり、使用感としてやや硬い粉体である。また、マットなタルクに比べ光沢が特徴でもある。このように大きくタルクと天然マイカでは特性が異なるが、最近、タルク代替としての天然マイカへの要望を多く伺うようになってきた。そこで、滑らかさ、成型性、光沢抑制、価格などへの配慮を念頭に、当社が有する様々な天然マイカや添加物のブレンド、さらには表面処理を試みた。

(実施事項)

1. 自社マイカからの選出

成型性を高めることや光沢を抑制するには微粉化が必要である。一方で、微粉化をすればきしみ感が強くなり肌あたりが悪くなる。これらを念頭に、価格も考慮しながら自社マイカの選出とブレンドを試みた。

2. 添加物探索

天然マイカの粉砕・分級、更にはブレンドだけではタルクの使用感には近づけることは難しい。そこで、先ず滑らかさと成型性を高める添加物として、デンプンなどの有機物、マイカ以外の無機微粉を中心に探索を行った。

3. 表面処理

滑らかな使用感と成型性を高めると期待できる、アモジメチコン処理、金属石鹸処理等を検討した。

4. 評価

- ①ポイントメイクでは、表面処理されていない未処理のタルクが用いられることが多い。そこで、 表面処理を行わずマイカや添加物を混合することで使用感等の検討を行った。方法として、バイ ンダー無しの状態で金皿にプレスし、プレス初期状態や湿潤下で状態変化を観察した。
- ②①で良好であったものについて、アモジメチョン処理を中心に行い、①と同様にプレス状態の観察や落下強度をタルクと比較した。

(結果)

1. 自社マイカの選出

成型性と光沢抑制を考慮して、微粉を含む自社マイカを中心に検討品を選出した。

2. 添加物探索

微粉を含むことによるきしみ感やざらつきなどを抑えて柔らかな感触を持つもの、プレス時に崩れながら板状のマイカの隙間を埋める機能を有する可能性のあるものを収集し検討を行った。

有機物:コーンスターチ、コメデンプン、オクテニルコハク酸デンプン AI、ステアリン酸 Mg、ステアリン酸 AI、ステアリン酸 Zn

無機物:微粉セリサイト、ケイ酸 AI、ケイ酸 Mg、軽質炭酸カルシウム

これらを、選出したマイカとブレンドし、プレス成型品をデシケーター中で吸湿試験を行った。その 結果の典型例を下記に示す。

コーンスターチ コメデンプン オクテニルコハク酸デンプン AI 炭酸 Ca/ステアリン酸 Mg

上図に示したように、デンプン類は非常になめらかであるものの吸湿条件下ではプレス品が膨張して浮き上がる傾向が顕著であった。これに対し、使用感は劣るもののケイ酸塩類や軽質炭酸カルシウムは成型性とその安定性に優れ、そのブレンド品の使用感と更なる成型性を高めるために金属石鹸の添加は有効であった。選出されたマイカへの添加物としては、ケイ酸 AI やケイ酸 Mg のケイ酸塩類や炭酸カルシウム等の無機物が成型性を高め、滑らかさの使用感改良として金属石鹸の添加が良いと判断した。

3. 使用感を考慮したマイカのブレンド

成型性や光沢抑制のために微粉を含むマイカを用いると、きしみが生じ滑らかさの低下を生じる。これを解決するため、微粉を含まない自社の主要マイカをブレンドし、引っ掛かりやきしみを軽減する検討を価格も考慮しながら行った。その結果、タルクまでは改善されないものの、自社主要マイカをブレンドすることにより、塗布時ののびを調節することが可能となった。

4. 表面処理によるタルク代替物開発

前述のマイカの選出やブレンド、添加物探索結果を受けて、更なる使用感改良と成型性向上を目標にアモジメチコン処理の検討を行った。金属石鹸処理については、コストを考慮して、表面処理よりも金属石鹸を添加物として化粧料に配合する方が有利と判断して検討を行わなかった。

様々な検討を行ったが、以下には、使用感が良好であったもので、実際に落下試験を行った結果を示す。

タルク

①マイカ MIX/炭酸 Ca アミジメチコン 3%処理

②マイカ MIX/炭酸 Ca アモジメチコン 5%処理

③マイカ MIX アモジメチコン 5%処理

	タノ	レク	1)	2	3
プレス条件	2.5g,7MPa	3.5g,7MPa	2. 5g, 7. 5MPa	2. 5g, 7. 5MPa	2. 5g, 7. 5MPa
落下強度	3. 3	2. 0	0. 7	2. 3	1. 0

アモジメチコン 3%処理ではやや落下が劣る傾向があるが、使用感は滑らかなものであった。5%処理まで行うと、落下強度も遜色なく、また、割れ方の症状も浮きではなく割れの傾向が強くなりタルクと類似の傾向であった。炭酸カルシウム未添加もある程度の落下強度がありアモジメチコン処理が有効であった。

(まとめ)

今回、タルク代替のニーズを踏まえ、当社のマイカを用いた提案を検討した。

その結果、未処理のマイカに対しては、ケイ酸塩類や軽質炭酸カルシウム等の無機物、金属石鹸の添加が良好であることが判った。また、この知見を踏まえ、当社の様々なマイカをブレンドしアモジメチコン処理をすることで、滑らかさ、成型性、光沢などの使用感と共に、価格を抑えたタルク代替原料「アモジメチコン処理マイカブレンド粉体」が開発できたと考えている。